

Mode d'emploi Contrôleur d'étanchéité

Wöhler DP 700

Technique sur mesure

Sommaire

1	Informations Générales5
1.1	Informations relatives au mode d'emploi 5
1.2	Remarques5
1.3	Utilisation conforme6
1.4	Références et conformités normatives
1.5	Composition 8
1.6	Transport 8
1.7	Traitement des déchets
1.8	Fabricant
2	Données techniques9
3	Organes de commande11
3.1	Fonctions 11
3.2	Raccords 12
3.2.1	Mesure de pression positive (débit ≥ 0.3 l/s)12
3.2.2	Mesure de pression positive (débit < 0,3 l/s)13
3.2.3	Mesure de pression négative (débit ≥ 0,3 l/s) 14
3.2.4	Mesure de pression négative (débit < 0,3 l/s)
3.3	Adaptateur
3.4 2.5	Anichage et panneau de touches
3.3 3.5.1	Élemente d'obturation des résouur
3.5.1	Desumentation et anglyas des dennées
3.5.Z	Application 20
3.0	Principa de mesure et normes applicables 21
5.7	Príncipe de mesure et normes applicables21
4	Preparation du reseau aeraulique23
4.1	Site et objet de test23
4.2	Moment et objet du test
4.3	Isolation de la portion de réseau aéraulique à tester
4.4	Positionnement de l'appareil 24
4.5	Préparation de la mesure 25
4.6	Test selon NF EN 15727 27

5	Allumer l'appareil	. 28
6	Test selon NF EN 12599	. 29
7	Menu	. 30
8	Déroulement de la mesure	. 31
8.1	Impression du protocole	. 34
8.2	Représentation graphique	. 34
8.3	Mode Expert	. 35
8.3.1	Saisie/modification de la classe d'étanchéit	é :. . 35
8.3.2	Saisie/modification de la surface :	. 35
9	Messages d'avertissement	. 36
10	Menu principal	. 37
10.1	Option « Mesure »	. 37
10.2	« Imprimer »	. 38
10.3	« Grafique »	. 38
10.4	Option « Sauvegarder »	. 38
10.5	Option « Gestion des données »	.40
10.6	Option « Mode Laboratoire »	.40
10.7	Classe d'étanchéité définie par l'utilisateur.	.41
10.8	Option « Pression différentielle »	. 42
10.9	Option « Parametres »	.43
10.9.1		. 44
10.10	Option « Calibration »	.44
10.11		.45
11	Contenu d'un protocole imprimé	.46
12	Échange de données avec un PC fix ou portable	e . 48
12.1	Transmission des données du DP 700 au F	PC.
12.2	Transmission des données du PC au DP 7	00. .48
13	Maintenance	. 49
13.1	Liste de maintenance	. 50

14	Garantie et service	51
14.1	Garantie	51
14.2	Service	51
15	Accessoires complémentaires	52
16	Déclaration de conformité	53
17	Annexe	54

1 Informations Générales

1.1 Informations relatives Ce au mode d'emploi

Ce mode d'emploi vous permet de travailler en toute sécurité avec votre Wöhler DP 700 Contrôleur d'Etanchéité. Il doit être conservé à titre d'information.

Le Wöhler DP 700 ne peut être utilisé que par un personnel dûment qualifié aux fins prévues.

Nous déclinons toutes responsabilités pour des dommages dus à un non respect de ce mode d'emploi.

1.2 Remarques

Tout non respect de cet avertissement risque de causer des blessures.

Attention !

Désigne des consignes signalant un danger dont la non-observation peut conduire à des dommages de l'appareil.

A NOTER ! Information utile

1.3 Utilisation conforme

Le Wöhler DP permet la caractérisation en laboratoire ou sur site de l'étanchéité à l'air des composants et des réseaux aérauliques (circulaires et/ou rectangulaires).

L'appareil (dé)pressurise automatiquement le réseau à la pression choisie, il mesure le débit de fuite et caractérise l'étanchéité par la classe obtenue.

Sur site, il permet d'effectuer les mesures d'étanchéité à l'air des réseaux aérauliques préconisées par les normes NF EN 12599, NF EN 16798-3, NF EN 13779 et NF EN 14134, chacune renvoyant aux méthodes décrites dans les normes NF EN 12237 et NF EN 1507. De plus, un nouveau module permet d'effectuer directement, selon le type de bâtiment, les mesures et les corrections conformément au FD E 51-767 qui sert de référence notamment à la RT 2012 et au label Effinergie +.

En laboratoire, le DP700 permet également de caractériser l'étanchéité à l'air des composants de réseaux conformément aux normes NF EN 15727 et NF EN 1751.

1.4 Références et conformités normatives

Norme	Titre
NF EN 12599	Ventilation des bâtiments - Procédures d'essai et méthodes de mesure pour la réception des installations de conditionnement d'air et de ventilation
NF EN 14134	Ventilation des bâtiments - Essai de performances et contrôles d'installation des systèmes de ventilation résidentiels
NF EN 13779	Ventilation dans les bâtiments non résidentiels - Exigences de performances pour les systèmes de ventilation et de conditionne- ment d'air
NF EN 12237 :	Ventilation des bâtiments - Réseau de conduits - Résistance et étanchéité des conduits circulaires en tôle
NF EN 1507	Ventilation des bâtiments - Conduits aérauliques rectangulaires en tôle - Prescriptions pour la résistance et l'étanchéité
FD E 51-767	Ventilation des bâtiments - Mesures d'étanchéité à l'air des ré- seaux
NF EN 13180	Ventilation des bâtiments - Réseau de conduits - Dimensions et prescriptions mécaniques pour les conduits flexibles
NF EN 13403	Ventilation des bâtiments - Conduits non métalliques - Réseau de conduits en panneaux isolants de conduits
NF EN 15727	Ventilation des bâtiments - Composants de réseaux, classification de l'étanchéité et essais
NF EN 1751	Ventilation des bâtiments - Bouches d'air - Essais aérodyna- miques des registres et clapets

1.5	Composition	Appareil	Composition du pack
		Wöhler DP 700	Un appareil de mesure DP 700
			Un conduit plastique flexible (Ø 50 mm, longueur 3,75 m) avec raccord femelle au réseau (Ø 100 mm) pour la mesure du débit
			Un conduit caoutchouc flexible (Ø 10 mm, longueur 4,00 m) + 2 connecteurs en laiton et le manchon d'adaptation et pour la me- sure du débit avec adapta- teur type 0.3
			Un conduit caoutchouc flexible (Ø 10 mm, longueur 10 m) avec raccord femelle au réseau (Ø 100 mm) pour la mesure de pression
			Un adaptateur Type 0.3
			Un câble d'alimentation électrique 230 V, 10 A, Ion- gueur 2,5 m
			Un jeu de 5 filtres plats
			Un certificat d'étalonnage
			Deux valises de rangement et de transport
1.6	Transport	Attention ! Un transport inada reil.	pté peut endommager l'appa-

Transporter le contrôleur dans la housse prévue à cet effet pour éviter de le détériorer.

1.7 Traitement des déchets

Les composants électroniques ne sont pas des déchets domestiques. Ils doivent être éliminés en respectant la législation en vigueur.

Les batteries défectueuses, une fois retirées de l'appareil peuvent être déposées dans un centre de recyclage des déchets publics, un point de vente ou de stockage de batteries.

Wöhler Technik GmbH

Wöhler-Platz 1 33181 Bad Wünnenberg Tel.: +49 2953 73-100 Fax: +49 2953 7396-250 www.woehler.fr

2 Données techniques

Mesure de la pression

Principe	Capteur piézo-resistif semi-conducteur
Plage de mesure	± 7000 Pa
Résolution	0,1 Pa jusqu'à ± 900 Pa, 1 Pa au delà
Précision	valeur maximale entre ± 0,5 Pa et ± 2,5 % de la valeur affichée

Mesure du débit volumique (à 1013 hPa et 20 °C)				
Principe	An	Anémomètre à fil chaud		
Plage 230 V, 50 HZ	0,0 23 0,0 11	00 à 55,00 l/s si alimenté 0V, 50Hz 00 à 40,00 l/s si alimenté 0V, 60Hz		
Résolution	0,0 0,3 0,0 3,0 0,0	0,0001 l/s pour un débit ≤ 0,3000 l/s, 0,001 l/s pour un débit ≤ 3,000 l/s 0,01 l/s au delà		
Précision	Valeur maximale entre ± 0,0009 l/s ou ± 5 % de la valeur affichée			
Plage de mesure d	bit de fuite			
Adaptateur 0.3 < 0		0,3000 l/s		
Sans adaptateur	0,3	,30 bis 55,00 l/s		
Données générales	5			
Alimentation		230 V, 50 ou 110 V, 60 Hz		
Intensité		max. 9 A		
Température d'utilisa- tion		+ 5 à 40 °C		
Température de stockage		-20 à +50 °C		
Dimensions		33 x 36 x 15 cm		
Poids de l'appareil (sans accessoires)		Environ 9,5 kg		

3 Organes de commande

3.1 Fonctions

Fig. 1 : Parties de l'appareil

- 1 Interrupteur principal
- 2 Prise de réseau
- 3 Interrupteur coupe-circuit (Fusible T10, 250 V)
- 4 Raccord de pression différentielle (positive)
- 5 Raccord de pression différentielle (négative)
- 6 Interface infrarouge pour imprimante thermique Wöhler TD 100

- 7 Prise USB
- 8 Écran couleur OLED
- 9 Clavier tactile
- Raccord de débit d'air Ø 50 mm pression positive (ici avec adaptateur)
- 11 Raccord de débit d'air Ø 50 mm pression négative (sur le dessus de l'appareil, pas visible dans l'image)
- 12 Poignée de transport réglable
- 13 Point de pression pour régler la poignée (sur les deux côtés)

Organes de commande

3.2 Raccords

3.2.1 Mesure de pression positive (débit \geq 0,3 l/s)

Fig. 2: Raccords des flexibles sans adaptateur

- 1 Conduit plastique flexible pour la mesure du débit
- 2 Conduit caoutchouc flexible pour la mesure de la pression
- 3 Câble d'alimentation

3.2.2 Mesure de pression positive (débit < 0,3 l/s)

Fig. 3 : Flexible de mesure de l'air avec adaptateur

- 1 Conduit caoutchouc flexible pour la mesure du débit avec adaptateur
- 2 Conduit caoutchouc flexible pour la mesure de la pression
- 3 Câble d'alimentation
- 4 Adaptateur

3.2.3 Mesure de pression négative (débit ≥ 0,3 l/s)

- 1 Conduit plastique flexible pour la mesure du débit
- 2 Conduit caoutchouc flexible pour la mesure de la pression
- 3 Câble d'alimentation

3.2.4 Mesure de pression négative (débit < 0,3 l/s)

- 1 Conduit caoutchouc flexible pour la mesure du débit avec adaptateur
- 2 Conduit caoutchouc flexible pour la mesure de la pression
- 3 Câble d'alimentation
- 4 Manchon d'adaptation pour mesure de pression négative avec adaptateur

Adaptateur 3.3

Attention !

Le numéro de série de l'adaptateur doit correspondre au numéro de série du Wöhler DP 600. (Le numéro de série se trouve sur l'autocollant sur l'appareil et sur l'adaptateur.

duit caoutchouc flexible d'air pour adaptateur.

Fig. 4 : Adaptateur 0,3

3.4 Affichage et panneau de touches

Fig. 5 : Affichage et touches

Le Wöhler DP 700 est équipé d'un écran couleur de 6 cm. La technologie OLED permet la lecture sous pratiquement n'importe quel angle de vue.

Quatre touches sont situées au bas de l'écran d'affichage pour faire fonctionner le Wöhler DP 700. La fonction actuelle de la touche est indiquée dans la ligne inférieure de l'affichage.

Touche MENU:

Appuyer une fois: Retourner au menu principale Appuyer deux fois: Ouvrir le menu de saisie

Fig. 6 : Écran d'affichage Wöhler DP 700

L'affichage se divise en trois parties: ligne en-tête (en haut), barre de menu (en bas) et affichage. La fonction sélectionnée est affichée en haut et à gauche.

La date, l'heure et l'état du diagnostic système sont indiqués dans la fenêtre d'état en haut à droite. Le reste de l'écran est réservé aux mesures et au menu.

La barre de menu se situe en partie basse de l'écran d'affichage et se compose de trois touches souples.

3.5 Accessoires

3.5.1 Élements d'obturation des réseaux

Les ballons d'obturation ne sont pas inclus dans le pack DP 700, sinon dans les accessoires complémentaires. Il y en a beaucoup de formes et dimensions.

Fig. 7 : Set d'obturation pour des conduits d'air circulaires

3.5.2 Documentation et analyse des données

nés aux PC avec le logiciel (voir chapitre 12 et d'imprimer les données sur l'imprimante thermique Wöhler TD 100. Le logiciel et l'imprimeur ne sont pas inclus le pack DP 700, sinon dans les accessoires complémentaires.

Il est possible d'enregistrer et d'analyser les don-

Fig. 8 : Set de documentation, y compris le logiciel

3.6 Application

Le Wöhler DP 700 (dé)pressurise automatiquement le réseau à la pression choisie, il mesure le débit de fuite et caractérise l'étanchéité par la classe obtenue.

Sur site, il permet d'effectuer les mesures d'étanchéité à l'air des réseaux aérauliques préconisées par les normes NF EN 12599, NF EN 13779 et NF EN 14134, chacune renvoyant aux méthodes décrites dans les normes NF EN 12237 et NF EN 1507. De plus, un nouveau module permet d'effectuer directement, selon le type de bâtiment, les mesures et les corrections conformément au FD E 51-767 qui sert de référence notamment à la RT 2012 et au label Effinergie +.

En laboratoire, le Wöhler DP 700 permet également de caractériser l'étanchéité à l'air des composants de réseaux conformément aux normes NF EN 15727 et NF EN 1751.

	Limite			
NF EN 13779	NF EN 16798-3	EURO- VENT 2/2	NF EN 24194 parte 2	d'étanchéité à l'air (fmax) m³ s ⁻¹ m ⁻²
	ATC 7			Non précisé
	ATC 6			0,0 67 5 x pt ^{0.65} x 10⁻³
Α	ATC 5	Α	II	0,0 27 x pt ^{0.65} x 10 ⁻³
В	ATC 4	В		0,00 9 x pt ^{0.65} x 10 ⁻³
С	ATC 3	С	IV	0,00 3 x pt ^{0.65} x 10 ⁻³
D	ATC 2			0,00 1 x pt ^{0.65} x 10 ⁻³
	ATC 1			0,000 33 x pt ^{0.65} x 10 ⁻³

Classes d'étanchéité

Table 1 Classes d'étanchéité selon la norme

Le Wöhler DP 700 peut être utilisé pour des tests en surpression ou dépression. Il suffit de changer le raccord du conduit plastique flexible de Ø 50 mm (voir fig. 1, part 10 et 11) et de sélectionner la pression de test correspondante.

sn

3.7 Principe de mesure et normes applicables

Pour mesurer l'étanchéité d'un réseau aéraulique, une pression de test constante est appliquée au système. Le débit d'air nécessaire pour maintenir cette pression constante est alors mesuré.

Ce débit correspond au débit d'air de fuite de la portion du réseau testé. Les conditions de test sont décrites dans la norme NF EN 12237 pour les conduits d'air de section circulaire et dans la norme NF EN 1507 pour les conduits d'air de section rectangulaires. Les conditions de test sont définies dans la norme NF EN 1751 pour les clapets et registres et dans la norme NF EN 15727 pour les autres composants de réseaux aérauliques.

Les conditions de test des conduits d'air flexibles sont décrits dans la norme NF EN 13180 et ceux des conduits d'air de panneaux isolants dans la norme NF EN 13403.

Les tests d'étanchéité doivent être menés sur site comme décrit dans la norme NF EN 12599 (en générale avec des pressions plus faibles comme décrit dans les normes de produits ci-dessus) - NF EN 12599 Procédures d'essai et méthodes de mesure pour la réception des installations de conditionnement d'air et de ventilation ».

La figure suivante décrit le principe de la mesure.

Deux turbines intégrées à l'appareil génèrent un flux d'entrée et de sortie à travers le conduit plastique flexible de Ø50 mm jusqu'au réseau aéraulique à tester. Ce flux d'air entrant augmente la pression dans le réseau. Cette pression est renvoyée dans l'appareil à travers le conduit flexible de mesure raccordé.

En mode automatique, l'appareil régule automatiquement la pression du réseau en fonction de la pression de test choisie.

Fig. 9 : Principe de mesure, test d'étanchéité avec le Wöhler DP 700

4 Préparation du réseau aéraulique

4.1 Site et objet de test Le réseau aéraulique doit être testé sur site conformément aux exigences des normes NF EN 12599 ou NF EN 14134.

> La pression de test négative ou positive recherchée peut être saisie dans l'appareil librement (dans la plage de mesure).

4.2 Moment et objet du test Le test d'étanchéité selon NF EN 12599 doit avoir lieu pendant l'installation du système de ventilation tant que les conduits d'air sont accessibles (sans isolation notamment).

Dans les réseaux aérauliques étendus ou complexes, le test doit être réalisé sur une portion du système. (voir NF EN 12599).

Dans chaque cas, la surface des conduits d'air à tester doit être supérieure à 10 m². La surface des conduits d'air à tester doit être mesurée et calculée conformément à la norme NF EN 14239.

INDICATION !

Il est recommandé d'évaluer au préalable le taux de fuite espéré (voir annexe).

- 4.3 Isolation de la portion de réseau aéraulique à tester
- Avant le début du test, la portion de réseau aéraulique à tester doit être isolée du reste du système. Toutes les ouvertures, les bouches d'air, etc., doivent être soigneusement obturées.

Vous trouvez des ballons d'obturation appropriés pour les conduits circulaires dans le chapitre "Accessoires".

INDICATION ! Une obturation appropriée des ouvertures et des raccords de mesure est primordiale.

4.4 Positionnement de l'appareil

ATTENTION!

Avant la mise en service, sortez l'appareil de la mallette et installez-le en position libre pour la ventilation. Si vous opérez l'appareil dans la mallette, il peut y avoir des dysfonctionnements ou un arrêt de sécurité à cause du chaleur.

- Posez le Wöhler DP 700 sur une surface plane et sèche pour qu'il soit dans une position stable.
 - Placez la poignée pivotante dans une position appropriée pour vous. Enfoncez simultanément sur les deux points de pression (ill. 1, élément 13) pour changer la position.

Il y a 4 positions différentes de la poignée de transport.

Fig. 10 : Point de pression de la poignée

• Branchez ensuite les sondes et tuyaux nécessaires pour la mesure, voir chapitre 3.2.

4.5 Préparation de la mesure

Fig. 11 : Exemple: Mesure sans adaptateur

 Les points de raccord du réseau à tester doivent être définis au préalable pour le conduit plastique flexible (air) ainsi que pour le conduit caoutchouc flexible fin de mesure de pression.

Les points de raccord doivent présenter une distance de séparation de 2 m environ afin d'éviter toute interaction.

 Le raccordement du flexible d'air de 50 mm et du flexible de mesure de pression doit être effectué avec des pièces de raccord adaptées.

Attention !

Éviter déformations et écrasements des flexibles de raccordement !

 Pour la surpression, le raccord face avant (Fig. 1, pièce 10) doit être utilisé, pour la dépression, le raccord face du dessus (Fig. 1, pièce 11).

Attention !

L'adaptateur 0,3 doit toujours être utilisé avec le raccord face avant, même pour la mesure avec dépression ! En général il faut l'utiliser seulement pour contrôler des composants individuels (NF EN 15727, NF EN 1751).

- Le flexible de mesure de pression est branché sur le raccord face avant « + » (Fig. 1, pièce 4).
- Le branchement sur le raccord « + » du flexible de mesure de la pression se fait au moyen d'une baïonnette : Verrouiller dans le sens des aiguilles d'une montre, ouvrir dans le sens contraire des aiguilles d'une montre.

INDICATION !

Le flexible de mesure de pression est branché sur le raccord face avant « + » (Fig. 1, pièce 4). L'appareil reconnaît automatiquement les surpressions et les dépressions. Le raccord « - » (Fig. 1, pièce 5) doit rester libre. Veillez à ce que le signe -/+ de la pression de test est correct. Si vous n'entrez pas de signe -/+, le test ne va pas commencer.

- <u>Démarrez le test d'étanchéité toujours sans</u> adaptateur.
- Lorsque le débit fuite est inférieur à 0,3 l, l'adaptateur 0,3 doit alors être utilisé pour améliorer la précision de mesure, voir chapitre 3.3.

4.6 Test selon NF EN 15727 Les mesures selon la norme NF EN 15727 ont

- lieu en règle générale pour les débit faibles
 - Réalisez le test selon les instructions de la norme NF EN 15727. La recommandation 2 m relative à la distance entre les raccords peut être ignorée dans ce cas.

Si l'élément á contrôler est très dense, il peut être nécessaire de modifier les paramètres de contrôle, voir chapitre 10.9 (Paramètres). Nous recommandons d'effectuer d'abord une mesure rapide en mode laboratoire ou de mesurer toujours in mode laboratoire. La modification des paramètres de contrôle sera raisonnable, si on contrôle régulièrement des éléments de la même taille ou du même type.

Fig. 12 : Exemple du test selon NF EN 15727

Fig. 13: Mesure de pression négative (débit < 0,3 l/s)

Pour les très petits composants, nous recommandons de brancher le conduit caoutchouc flexible (Ø 10 mm, longueur 4,00 m) directement sur l'adaptateur pour permettre l'utilisation d'un mamelon de raccordement.

Pour la mesure de pression négative installez l' adaptateur du tuyau sur la partie haute de l'appareil, voir Fig. 13.

Branchez le flexible d'air 4 m via l#adaptateur à l'appareil.

5 Allumer l'appareil

 Connectez d'abord tous les accessoires nécessaires aux Wöhler DP 700. Après branchez l'appareil sur le secteur avec la fiche d'alimentation.

Danger de mort par électrocution !

L'appareil est sous une tension de 230 VAC , 50 HZ ou 110 V, 60 HZ. Le contact avec des éléments de tension électrique peut être mortel.

Ne jamais manipuler la fiche d'alimentation avec des mains mouillées !

Ne pas tirer le bloc d'alimentation de la prise par le câble, il pourrait casser !

Utiliser le bloc d'alimentation uniquement si la tension électrique indiquée sur la plaque signalétique correspond à celle de la prise !

Allumer le Wöhler DP 700 avec l'interrupteur principal (Fig. 1, part 1).

6 Test selon NF EN 12599

- La portion de réseau aéraulique à tester doit être soumise dans la mesure du possible à une pression de test - positive ou négative qui correspond à la pression de service p_{design.}
- Conformément à la norme, la pression doit être maintenue sur une plage de ±5 % de la valeur spécifiée pendant 5 minutes. Le cycle de mesure peut être interrompu à tout moment.

Une correction des valeurs en regard des températures ou de la pression n'est pas nécessaire.

INDICATION !

Merci d'observer les instructions des normes NF EN 1507, NF EN 12237, NF EN 1507, NF EN 13180, NF EN 13403, NF EN 1751, NF EN 15727 et NF EN 12599 ou bien NF EN 14134.

Menu

7 Menu

8 Déroulement de la mesure

Après la mise en circuit de l'appareil, la version s'affiche sur l'écran.

Lors de la première mise en service, l'appareil démarre automatiquement en mode guidé. Autrement l'appareil démarre dans le mode qui a été sélectionné dans le setup.

Fig. 14 : Écran de démarrage

Fig. 15 : Mode guidé

Fig. 16: Saisie la surface du réseau a tester

L'appareil démarre automatiquement en mode guidé :

- Suivez les instructions et sélectionnez la classe d'étanchéité à caractériser avec la touche ↑ ou ↓.
- Appuyez sur la touche "SUIV".
 - Saisissez la surface du réseau d'air à tester avec la touche ↑ ou ↓.
- Appuyez sur la touche "SUIV" .

•

Déroulement de la mesure

Fig. 18 : Affichage du taux de fuite maximal admissible

INDICATION !

À partir d'ici, le mode guidé et le mode Expert présentent un affichage identique. Suivez les instructions ou modifiez les paramètres comme décrit au chapitre "Mode Expert".

Saisissez la pression de test souhaitée avec la touche ↑ ou ↓.

INDICATION !

•

Attention au signe : Il est absolument nécessaire de tenir compte si la pression est négative ou positive.

- Vous devez raccorder le conduit plastique flexible d'air de 50 mm en fonction de la pression sélectionnée (dépression > face supérieure du boîtier, surpression > face avant) !
- Raccordez toujours le conduit caoutchouc flexible de mesure de la pression à « + » !
- Appuyez sur la touche "SUIV".

L'écran montre l'affichage du résultat du calcul préalable du taux de fuite maximal admissible. L'écran suggère sil faut mesurer avec adaptateur ou no

- Contrôlez l'adaptateur installé :
- Appuyez sur la touche "SUIV" :

T	est etancl	neite	15:58:48 20.09.2019
	Classe	:	ATC 3(C)
	Surface	:	50.00 m ²
	Pression	:	200 Pa
	Limite	:	4.70 以s
	Adaptat.	:	Sans
	Demarrer	test	
	MENU	$ \psi \psi$	→ →

Fig. 19 : Avant de mesurer

Test et	ancheite 9:	34:31 4.2019 🗸
Act:	4.67	' ' _{'s}
Max:	4.70	۱ ۲ <u>/</u> s
Test No	p.: 111	
Result	at: Test reus	si
MENU	IMPRIM	NOUV

Fig. 20 : Affichage du résultat

Affichage des paramètres définis ainsi que du fuite maximal admissible.

Appuyez sur la touche → pour démarrer la mesure.

Après l'autotest, la mesure démarre dès que la pression choisie est atteinte. Elle dura ensuite 5 min.

INDICATION !

La mesure peut être interrompue à tout moment avec le bouton "Stop". Aussi après l'interruption il y aura un affichage du résultat.

Pendant la mesure, la pression atteinte ainsi que le débit actuel sont affichés.

Lorsque la durée de mesure de 300 s s'est écoulée, l'appareil s'arrête automatiquement. (durée de mesure standard).

L'appareil indique si le test a reussi ou echoué avec les paramètres saisis.

- Démarrez l'impression du protocole en appuyant sur la touche d'impression
- ou lancez une nouvelle mesure avec la touche Nouveau.

8.1 Impression du protocole

Fig. 21 : Aperçu du protocole avant impression.

8.2 Représentation graphique

Fig. 22 : Représentation graphique

Description de la représentation graphique :

Apercu du protocole avant impression.

- Vous pouvez parcourir le protocole avec la touche ↑ ou ↓.
- Allumez l'imprimante Wöhler TD 100 et positionnez-le devant la fenêtre IR. (fig. 1. pièce 6).
- Démarrez l'impression en appuyant sur la touche OK.

Pour enregistrer le protocole de mesure, sélectionnez « Enregistrer » dans le menu.

Représentation graphique :

- Appuyez sur la touche MENU et sélectionnez l'option Graphique avec la touche ↑ ou ↓.
 - Confirmez avec la touche -
 - Pour imprimer le diagramme, appuyez sur la touche IMPRIM. voir chapitre 8.2.
 - Pour revenir au menu, appuyez 1x sur la touche Menu ou sur Nouveau.
- Pour réaliser une nouvelle mesure, appuyez 2x sur la touche Menu.

Le diagramme à colonnes montre les débit d'air de fuite admissible pour la classe d'étanchéité pour la surface et la pression saisies. La valeur mesurée est représentée par une ligne rouge.

Les classes d'étanchéité qui sont atteintes sont représentées par des colonnes vertes. Non caractérisées par des colonnes rouges.

8.3 Mode Expert

Si le mode Expert est sélectionné lors de la configuration (voir chapitre 10.9), l'appareil démarre avec l'écran suivant.

Vous pouvez saisir directement les valeurs ici ou modifier les paramètres affichés, comme dans l'exemple de la classe d'étanchéité et de la surface :

•

8.3.1 Saisie/modification de la classe d'étanchéité :

Test etancheite			15:5 20.09	9:16 .2019
Clo	ISSE	:	ATC	3(C)
Sur	face	:	50).00 m²
Pre	ession	:	2	200 Pa
Lin	nite	:	4.	.70 l⁄s
Ado	uptat.	:	Sans	5
Den	arrer	test		
MEN	IU	Φ Ψ		→

- La touche ↑ ou ↓- vous permet d'accéder aux différentes lignes (ici la classe d'étanchéité).
- La touche →- vous permet de modifier la classe d'étanchéité.
- La touche ↑- ou ↓- vous permet d'accéder à la ligne suivante le cas échéant.
- Pour démarrer, sélectionnez la dernière ligne et appuyez sur la touche →-.

Fig. 23 : Sélection de la classe d'étanchéité

8.3.2 Saisie/modification de la surface :

Test etancheit	e 15:59:45 20.09.2019
Classe	: ATC 3(C)
Surface	: 50.00 m ²
Pression	: 200 Pa
Limite	: 4.70 L/s
Adaptat.	: Sans
Demarrer tes	t
MENU 🛧 🗸	✓ →

- Saisie rapide par sélection directe avec la touche →.
- La touche ↑- ou ↓ vous permet de modifier des chiffres.
- Pour quitter un champ de saisie, appuyez sur la touche ←- oder →- jusqu'à la dernière ligne.
- La touche ↑- ou ↓- vous permet de sélectionner le champ de saisie suivant souhaité.

Fig. 24 : Saisie/modification de la surface :

9 Messages d'avertissement

Si le débit volumique d'air de fuite estimé dépasse les performances de l'appareil, le message suivant s'affiche : Débit de fuite en dehors de la plage de mesure ! Réduisez la surface testée ou la pression."

 Modifiez les conditions de test en appuyant sur la touche Retour.

Fig. 25 : Avertissement: "Débit de fuite en dehors de la plage de mesure"

INDICATION ! Appuyez sur la touche SUIV pour ignorer ce message et lancer la mesure.

D'autres messages d'avertissement peuvent être les suivants :

- « Erreur de capteur » lors de l'autotest de l'appareil
- Éteignez l'appareil et redémarrez-le.
- Si le message d'erreur s'affiche de nouveau, il est nécessaire d'envoyer l'appareil au service.

« Surchauffe ! »

Une utilisation prolongée à régime très élevé peut entraîner une coupure de sécurité avec verrouillage.

 Quittez le graphique. L'appareil peut être remis en service après un temps de refroidissement.

10 Menu principal

- Les touches ↑ ou ↓ permettent de sélectionner les différentes options du menu.
- Sélection d'une option de menu avec la touche →.

: -

÷

• Lorsque vous appuyez sur la touche Menu, vous accédez à un formulaire de saisie pour une nouvelle mesure.

10.1 Option « Mesure »

Manchette caisson

Coefficient: 1.4

 $\mathbf{T} = \mathbf{V}$

Fig. 27 : Réglages selon FD E 51 - 767

ECHAP

L'option « Mesure » vous permet de sélectionner le mode de mesure.

- La mesure selon NF EN 12599 est préréglé. Pour effectuer cette mesure procédez comme décrit dans les chapitres 6 à 8.
- Pour effectuer une mesure selon la norme FD E 51-767, sélectionnez le type de bâtiment avec les touches ↑ ou ↓.

La table 4 de l'annexe (chapitre 17) vous montre la structure du menu et les critères d'évaluation de la norme FD E 51-767.

- Sélectionnez l'option avec les touches ↑ ou ↓ et sélectionnez la réponse « oui » (+) ou « no » (-) avec la touche →.
- Pressez la touche ECHAP 3 fois pour rentrer à l'affichage de mesure.

INDICATION !

Les réglages sont sauvegardés pour la prochaine mesure. Sélectionnez l'option « mesure » encore une fois pour les modifier, si nécessaire.

10.2 « Imprimer »

Fig. 28 : Option "Impression"

10.3 « Grafique »

Impression des donnés de la dernière mesure effectuée (voir chapitre 8.1).

R S INDICATION !

Cette option est uniquement disponible, si les données de mesure sont enregistrées.

- Vous pouvez parcourir le protocole avec la touche ↑ ou ↓-.
- Appuyez sur la touche Retour pour guitter le menu ou sur OK pour démarrer l'impression.

Sélection du grafique de la dernière mesure réalisée. (voir chapitre 8.2).

INDICATION ! Cette option est uniquement disponible, si les données de mesure sont enregistrées.

Fig. 29: Option "Graphique"

10.4

Fig. 30: Option "Sauvegarder"

Option « Sauvegarder » Sélectionnez l'option « Sauvegarder » du menu avec la touche - pour ouvrir la fenêtre de gestion des clients.

> Vous pouvez créer ici de nouveaux fichiers client ou enregistrer la mesure actuelle dans un fichier client déjà existante.

Sélectionnez l'option de menu "Nouveau client" avec la touche →.

Fig. 31: Créer un nouveau fichier client

•

N	ouveau	cl	i ent	18:23:09 19.01.201	6
	Nom	:	C <mark>I</mark> ie	nt 7	
	No.	:	m		
	Condu i	t:	c <mark>N</mark> nd	uit 1	
	Creer	cli	e <mark>Ö</mark> t		
			0		
	÷		Λ Ψ	→	

Fig. 32: Saisir le nom du client

Fig. 33: Donnés de mesure sauvegardeées dans un fichier client

- Saisissez d'abord le nom du client et le cas échéant, définissez le conduit.
- Procédez de la manière suivante:

- Sélectionnez une position de lettre/chiffre avec la touche \leftarrow or \rightarrow . Sélectionnez une lettre/un chiffre avec la touche \uparrow ou \downarrow .
- Pour quitter, accédez à la dernière ligne avec touche → ou ←.
- Procédez de même pour saisir le numéro de client et la désignation du conduit.
- Sélectionnez de nouveau la ligne "Créer client" et appuyez sur la touche →.
- Appuyez ensuite sur la touche Retour.

La liste des fichiers client s'affiche.

Le nouveau client s'affiche dans cette liste; sélectionnez-le avec la touche →-.

Sous le nom du client figurent les conduits créées et disponibles.

Sélectionnez un conduit avec les touches ↑und ↓-, puis appuyez sur la touche →- pour enregistrer.

L'enregistrement dure quelques secondes.

Lorsque l'enregistrement des données est terminé, la date de mesure s'affiche.

Dans le formulaire de saisie, un autre conduit peut également être créée.

10.5 **Option « Gestion des** données »

Accès et modification des données enregistrées

Parcourez les lignes avec les touches \uparrow et \downarrow , et sélectionnez avec la touche →-.

Fonctions:

- Afficher/imprimer le protocole ou diagramme
- Supprimer les lignes/sites de mesure
- Supprimer le client
- Supprimer tous les clients
- Option « Mode Labora-Le mode Laboratoire permet de réaliser une mesure sans régulation automatique de la pression toire » de test et sans limitation dans le temps. Ce mode peut réduire considérablement la durée de mesure et se prête particulièrement bien aux mesures rapides.

- Les touches ↑ und ↓ permettent de réguler • manuellement la pression.
- L'adaptateur peut être quitté ou innstallé pen-• dant la mesure : réduisez la soufflante, quittez l'adaptateur et modifiez le réglage avec la touche ADAPT.
- Terminez la mesure avec Stop. Poursuivez comme déjà décrit dans le chapitre 8.

Fig. 34: Écran en mode laboratoire

10.7 Classe d'étanchéité définie par l'utilisateur

Le taux U fuite défini par l'utilisateur peut être sélectionné dans l'écran de démarrage à côté des valeurs standard. Des mesures sont ainsi possibles sur des applications différentes avec d'autres valeurs seuils comme par exemple dans le domaine de la production électrique.

U s'affiche uniquement en cas de sélection des classes d'étanchéité lorsqu'une valeur ≠0 est enregistrée.

Le Wöhler DP 700 travaille avec les taux des fuites selon la norme spécifiés dans le table 1, page 20.

Sélectionnez une position de lettre/chiffre avec la touche \leftarrow or \rightarrow .

Les touches ↑ und + permettent de saisir un taux d'air de fuite défini par l'utilisateur.

Enregistrez la valeur saisie avec la touche→.

quittez avec la touche ←.

Fig. 35: Saisir le taux de fuites défini par l'utilisateur

10.8 Option « Pression différentielle »

Au repos et sous tension, le Wöhler DP 700 peut servir de manomètre différentiel pour mesurer la pression en fonction du temps.

Fig. 36: Raccorder les tuyaux capillaires pour mesurer la pression différentielle

Pour mesurer la pression différentielle entre 2 raccords de mesure (exemple : adaptateur à iris, écarts de pression de filtre, etc.), il faut raccorder un tuyau capillaire au raccord de pression positive (fig. 1, pièce 4) et autre tuyaux capillaire au raccord de pression négative (fig 1, pièce 5).

Pour trouver des tuyaux capillaires appropriés, voir chapitre "Accessoires"

La mise à l'échelle est automatique par durée de mesure de 120 s. L'actualisation est continue et chaque cycle de mesure efface le cycle précédent.

Fig. 37 : Graphique pression différentielle

- La touche PD=0 permet de réinitialiser l'écran.
- La touche ECHAP permet de revenir au menu.
- La touche STOP permet d'arrêter la mesure.
- Le protocole peut ensuite être imprimé sur l'imprimante Wöhler TD 100, voir chapitre 8.1.

10.9 Option « Parametres » •

Fig. 38: Menu de configuration, partie supérieure

- Naviguez avec les touches ↑ et↓.
- Sélectionnez une option du menu avec la touche →.
 - Sélectionnez une ligne avec les touches ← et →.
 - Modifiez le chiffre/la lettre sélectionné avec les touches**↑** et**↓**-
- Pour quitter, utilisez la touche → pour accéder à la fin de la ligne.

Parame	tres	18:32:50 19.01.2016	
Contras	ste :	100	
Unites			
Paramet	res re	oulateur	
		3	
Paramet	res pa	r defaut	
Paramet <mark>Mode</mark>	res pa E	r defaut xpert	
Paramet <mark>Mode</mark> LOGO	res pa E	r defaut <mark>×pert</mark>	

Fig. 39: Menu de configuration, partie inférieure

Fonctions :

- Les fonctions de date/heure sont explicites.
- Luminosité : La luminosité sert à régler la luminosité de l'écran.
- Sélection d'unités, voir chapitre 10.9.1
- Le système de configuration permet, le cas échéant, l'adaptation du régulateur PI pour la mesure automatique. Les valeurs par défaut peuvent être sélectionnées.
- Rétablissement des paramètres usine
- Fonctionnement : Utilisez la touche → pour basculer entre le mode guidé et le mode Expert.
- LOGO : Saisie de lignes de texte spécifiques au client et figurant dans la partie supérieure du protocole imprimé.

10.9.1 Sélection des unités

Fig. 40: Sélection des unités

Sélection des unités d'affichage. L'appareil calcule en interne toujours en l/s et Pa.

Sélectionnez l'option de menu avec les touches ✦ et ✦.

Sélectionnez l'unité avec la touche →.
 Unités disponibles :

Pression : Pascal (Pa) Hectoreses

Pascal (Pa), Hectopascal (hPa), Millibar (mBar), colonne d'eau (mm H_2O) et "_{WC}

- Débit d'air de fuite :l/s, m³/h, l/min, l/h, CFM, l/s m² (pour 1 m²)
- Quittez avec OK.

10.10 Option « Calibration »

Calibration		18:37:19 19.01.2016
Mot de passe	:	
Pression	•	1.000
Sans adapt.	:	1.000
Adapt. 0,3		1.000
0K 🛉 🕂	1	÷

Fig. 41: Option "Calibration" accessible avec mot de passe seulement

Attention !

Accessible avec mot de passe uniquement et pour le personnel technique. Des réglages incorrects peuvent entraîner des faux résultats.

L'option "Calibration" est accessible avec mot de passe uniquement.

10.11 Info

Données de l'appareil pour maintenance.

INF	0	9:53:10 10.04.2019
Cycles	:	111
TOTAL P	n :7	: 18
PRODUCT	ION:28	.09.2018
CALIB.	: 6	.12.2018
FIRMWAR	RE :V1	.05
	(9	.04.2019)
ECHAP	<u>↑</u> ↓	÷

Fig. 42: Option "Info"

11 Contenu d'un protocole imprimé

Test d'étanchéité	Test d'étanchéité	Explication de l'impri- mé
**** Wöhler DP 700 ****	**** Wöhler DP 700 ****	Modèle de l'appareil
Version 1.05	Version 1.05	Version du logiciel
Rapport de test N° 116	Rapport de test N° 117	Numérotation croissante des tests
Rapport de test étanchéité	Rapport de test étanchéité	
Selon les normes	Selon les normes	
NF EN 12237	NF EN 12237	
NF EN 1507, NF EN 12599	NF EN 1507, NF EN 12599	
Et NF EN 16798-3	Et NF EN 16798-3	
Informations saisies	Informations saisies	
Surface reseau : 121.20 m ²	Surface reseau: 121.20 m ²	Surface saisie
Classe recherchée : ATC 4	Classe recherchée : U	Classe d'étanchéité sé-
Facteur de fuite	Facteur de fuite	lectionnée
K : 9 l/s 1/m²	RF: 8 l/s 1/m ²	l aux d'air de fuite de
Adaptateur : sans	Adaptateur : sans	Modèle d'adaptateur saisi
Pression: 100 Pa	Pression: 200 Pa	Pression présélctionée. (pas en mode Labora- toire)
Pression at : 99 Pa	Pression at : 207 Pa	Pression moyenne effec- tivement atteinte -
Débit fuite : 11,20 l/s	Débit fuite : 15.65 l/s	Débit d'air de fuite effectif en l/s
Durée test : 117 s	Durée test : 300 s	Durée de mesure (pas en mode Laboratoire)
Limite	Limite	
classe ATC 6: 162.49 l/s cl. ATC 5(A): 65.00 l/s	classe ATC 6: 261.60 l/s cl. ATC 5(A): 104.64 l/s	Débit d'air de fuite ad- missible à la pression

cl. ATC 4(B): 21.67 l/s cl. ATC 3(C): 7.22 l/s cl. ATC 2(D): 2,41 l/s classe ATC 1: 0,79 l/s	cl. ATC 4(B): 34.88 l/s cl. ATC 3(C): 11.63 l/s cl. ATC 2(D): 3.88 l/s classe ATC 1: 1.28 l/s classe U: 31.00 l/s	effectivement atteinte - en guise d'orientation.
Résultats : Test réussi	Résultat : Test reussi	Vérification si le système testé correspond à la classe d'étanchéité re- quise.
Date : 23.09.2019	Date : 23.09.2019	
Heure : 13:45	Heure : 13:51	
Signature :	Signature :	

L'imprimé gauche indique une mesure automatique avec la classe d'étanchéité ATC4, qui a été interrompue au bout de 117 s. (La durée de mesure automatique est de 300 s.)

L'imprimé droit indique une mesure en mode Laboratoire avec une classe d'étanchéité variable (différente de la norme) de 8 l/s m², qui a été imprimée au bout d'une durée de mesure quelconque.

12 Échange de données avec un PC fixe ou portable

Les données du Wöhler DP 700 peuvent être transférées sur PC fixe ou portable par un câble USB. Pour ce faire, vous aurez besoin du logiciel PC Wöhler inclu dans le set de documentation , voir accessoires. Avec le logiciel il est possible de créer des fichiers de client et de les transférer au Wöhler DP 700 avant le début de la journée de mesure.

Il est aussi possible de mettre á jour le logiciel de l'appareil avec ce logiciel PC.

- Avant de travailler avec le logiciel, branchez le câble USB dans la prise USB du Wöhler DP 700 (cf. ill. 1 élément 7) et dans la prise USB du PC.
- Démarrez le logiciel sur l'ordinateur.
- 12.1 Transmission des don- nées du DP 700 au PC
 - Dans le logiciel, cliquez sur "Recevoir" pour transférer les données du Wöhler DP 700 vers le PC.

INDICATION !

Les données du Wöhler DP 700 substitueront les données déjà enregistrées dans le logiciel PC . Pour ne pas perdre les données, vous pouvez enregistrer les données de mesure déjà existantes sous un autre nom de fichier.

Après la transmission des données, au dessus de la barre de progrès le texte "data transfer successfull" (transmission réussi) apparaît.

- Pour analyser les données, voir le manuel du logiciel Wöhler PC.
- 12.2
 Transmission des données du PC au DP 700
 Cliquez sur "Envoyer" pour transférer les données marquées du PC vers le Wöhler DP 700.

INDICATION !

Si vous transférez des données du PC vers le Wöhler DP 700 vous allez en même temps supprimer tous les données de l'appareil enregistrées antérieurement.

13 Maintenance

Les pièces à l'intérieur du Wöhler DP 700 ne nécessitent pas de maintenance. De ce fait, l'utilisateur ne doit jamais ouvrir l'appareil.

Seul le personnel spécialisé de la société Wöhler sera autorisé à ouvrir le boîtier de l'appareil.

Prudence - Danger de mort

230V, 50 Hz

13.1 Liste de maintenance

Intervalle	Travail de mainte- nance
Selon utilisation, mais au min. 1 x par an	Graisser légèrement tous les joints toriques sur les raccords d'air et de pression ainsi que sur l'adaptateur 0.3.
En cas de salissure visible.	Remplacement du filtre dans le raccord d'air - sous-pression (ill. 1, élément 11)
Si nécessaire	Remplacement du fu- sible primaire - Retirer fiche de cou- rant - Retirer porte-fusible dans le coin supérieur.

Attention !

T

Remplacer fusible uniquement par autre fusible de même type.

une fois par an		Faire vérifier et calibrer l'appareil de mesure chez le fabriquant ou dans un atelier de ser- vice autorisé.	
1	Attention I		

Attention !

Le calibrage de l'appareil de mesure est uniquement possible chez le fabriquant.

14 Garantie et service

14.1	Garantie	Chaque Contrôleur d'étanchéité Wöhler DP 700 a été testé dans tous ses fonctions et ne quitte notre usine qu'après avoir été soumis à un con- trôle de qualité approfondi. Le contrôle final est consigné en détail dans un rapport livré avec l'appareil.
		En cas d'utilisation correcte, la période de garan- tie pour le Wöhler DP 700 est de 12 moins à compter de la date de vente. Celle-ci ne couvre pas les pièces d'usure comme les filtres.
		En cas de réparation, les frais de port et d'embal- lage de l'appareil ne sont pas couverts par la ga- rantie.
		Cette garantie s'arrête lorsque des réparations et modifications ont été effectuées par un personnel non autorisé.
14.2	Service	Pour nous, le SERVICE joue un rôle très impor- tant dans nos rapports avec nos clients. Voilà pourquoi nous sommes toujours à votre disposi- tion même après l'expiration de la période de ga- rantie.
		 Si vous nous envoyez l'instrument, il vous sera renvoyé par notre service d'expédition après réparation en quelques jours seulement.
		 Vous pouvez solliciter l'aide directe de nos ingénieurs par téléphone.

15 Accessoires complémentaires

Kits

Kit d'étanchéité pour les conduits d'air circulaires avec pompe de gonflage des ballons, cinq ballons d'obturation LBLADD Ø 100 - 250 mm, cinq ballons Ø 200 - 400 mm et cinq ballons Ø 315 - 630 mm	Article 7103
Kit de documentation avec logiciel de gestion et de transfert des données, câble USB, imprimante thermique Wöhler TD 100 , Jeu de papier thermique (10 rouleuaux) pour Wöhler TD 100	Article 7112
Tuyaux capillaires pour mesurer la pression différentielle	
Tuyau capillaire pression positive	Article 2604
Tuyau capillaire pression négative	Article 2672
Conduit	
Conduit plastique (Ø 50 m, L 10 m)	Article 22235
Matériel consommable	
Filtre Wöhler DP 700, livré par paquet de 50 pièces	Article 2617
Papier imprimante, 10 rouleaux pour Wöhler TD 100 Imprimante	Article 4145

16 Déclaration de conformité

Le fabricant

Wöhler Technik GmbH Wöhler-Platz 1, Bad Wünnenberg

déclare que le produit suivant:

Nom du produit: Contrôleur d'étanchéité Modèle:Wöhler DP 700

est conforme aux exigences de protection essentielles fixées dans les directives du Conseil portant sur l'alignement des prescriptions juridiques, dans les Etats membres, sur la compatibilité électromagnétique (2014/30/EU).

Pour juger de la compatibilité électromagnétique du produit, il a été fait appel aux normes suivantes:

EN 61000 EN 55011, classe B, EN 55014, EN 55016, EN 55022

Bad Wünnenberg, 23.09.2019

Dr. Stephan Ester, géant WÖHLER Technik GmbH

17 Annexe

Classe de'étanchéité	ATC6	ATC5 (A)	ATC4 (B)	ATC3 (C)	ATC2 (D)	ATC1
20 Pa	115 m²	290 m²	870 m²	2600 m ²	7800 m²	23770 m ²
200 Pa	26 m²	65 m²	195 m²	580 m²	1750 m²	5320 m²
2000 Pa	5 m²	15 m²	44 m²	130 m²	390 m²	1190 m ²

Table 1: Limites théoriques de la plage si alimenté 230 V 50 Hz

Fig. 43: Grafique: Pression de test en fonction de la surface selon la classe d'étanchéité A - D

Sur demande un table Excel est disponible pour estimer approximativement le volume de fuite á attendre

		Classe d'étanchéité	Classe d'étanchéité
		200 Pa	20 m²
Classe d'étanchéité	Classe d'étanchéité		
DIN EN 16798-3	DIN EN 13779	Débit max.	Adapteur
ATC 6		42,27 l/s	sans
ATC 5	Α	16,91 l/s	sans
ATC 4	В	5,64 l/s	sans
ATC 3	С	1,88 l/s	sans
ATC 2	D	0,63 l/s	Adapter 0,3
ATC 1	-	0,21 l/s	Adapter 0,3

Test d'étanchéité selon NF EN 12599 avec le Wöhler DP 700

Table 2: Exemple avec 200 Pa et 20 m² surface de conduit.

Fig 44 : Graphique dudébit maximale selon la table 3

Test d'étanchéité selon FD E 51-767

Sélectionner type de batiment	Maison individuelle			
Caisson inclus?	-	+	+	
Fuite caisson connue?	-	-	+	
En cas de oui, entrez fuite caisson l/s	0	0	XX.XX	
Plenums dans la surface mesurée				
UTA dans la surface mesurée				
Manchette caisson dans la surface mesurée				
Pression	80 Pa	80 Pa	80 Pa	
Calculer et afficher pendant la mesure : qvl = Act.:	x 1	x 0,75 mais min 1,5 l/s	- qvfan	

Table 4-1 : Test FD E 51-767 – Maison individuelle

Sélectionner type de batiment	Residentiel collectif							
Caisson inclus?								
Fuite caisson connue?								
En cas de oui, entrez fuite caisson l/s								
Plenums dans la surface mesurée	-	+	-	-	+	+	-	+
UTA dans la surface mesurée	-	-	+	-	+	-	+	+
Manchette caisson dans la surface mesurée	-	-	-	+	-	+	+	+
Pression	160 Pa	160 Pa	160 Pa	160 Pa	160 Pa	160 Pa	160 Pa	160 Pa
Calculer et afficher pendant la mesure : qvl = Act.:	x 1,5	x 1,4	x 1,4	x 1,4	x 1,2	x 1,3	x 1,3	× 1
Afficher après la mesure : "Si P design > 300 Pa, mesurer de -uveau pdesign."								

Table 4-2 : Test FD E 51-767 - Residentiel collectif

Sélectionner type de batiment	Batiment tertiaire							
Caisson inclus?								
Fuite caisson connue?								
En cas de oui, entrez fuite caisson l/s								
Plenums dans la surface mesurée	100	+	1-1	-	+	+	-	+
UTA dans la surface mesurée	-	-	+	-	+	÷	+	+
Manchette caisson dans la surface mesurée	-	-	-	+	-	+	+	+
Pression	250 Pa	250 Pa	250 Pa	250 Pa	250 Pa	250 Pa	250 Pa	250 Pa
Calculer et afficher pendant la mesure : qvl = Act.:	x 1,5	x 1,4	x 1,4	x 1,4	x 1,2	x 1,3	x 1,3	x 1
Afficher après la mesure : "Si P design > 300 Pa, mesurer de -uveau pdesign."	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table 4-3 : Test FD E 51-767 - Batiment tertiaire