

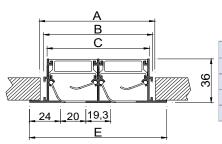
LNG Diffuseurs linéaires

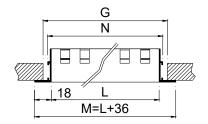
Les diffuseurs linéaires de la série LNG ont été conçus pour allier esthétique et performances techniques dans les installations de CVC.

- Ailettes réglables pour modifier la direction de l'air sans altérer le débit.
- Montage en faux plafond ou suspendu au plafond.
- Performances optimales sur installations CAV ou VAV.
- Conçu pour des installations entre 2,6 et 4 m de haut, avec un différentiel de température jusqu'à 12 C°.
- Convient à la fois au soufflage et à la reprise.

Avantages du produit

- Il permet la formation de lignes de diffusion continues, avec des zones actives et inactives, sans rompre l'uniformité esthétique de l'ensemble.
- Version MOD pour une plus grande intégration et rapidité de montage dans les plafonds modulaires.





LNG-AR

slots	Е	Α	В	С
1	68	55	47	40
2	107	95	86	80
3	147	134	125	119
4	186	173	165	159

L	М	N	G
500	536	507	516
1000	1036	1007	1016
1200	1236	1207	1216
1500	1536	1507	1516
2000	2036	2007	2016

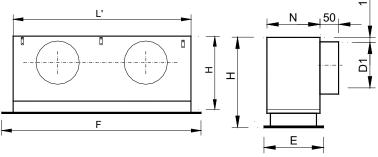
CLASSIFICATION

LNG-AR Diffuseur avec pièces d'extrémités, pour longueurs ≤ 2 m.

...-ARI Diffuseur avec 1 pièce d'extrémité à gauche. Nécessaire pour lignes > 2 m.

...-ARD Diffuseur avec 1 pièce d'extrémité à droite. Nécessaire pour lignes > 2 m.

...-INT Diffuseur sans pièces d'extrémités, pour lignes > 4 m.


(En cas de besoin de sections de longueur égale, il faut l'indiquer)

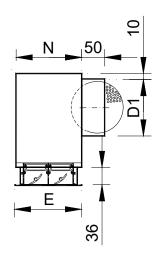
LNG-MOD Diffuseur linéaire modulaire conçu pour remplacer une dalle de faux plafond.

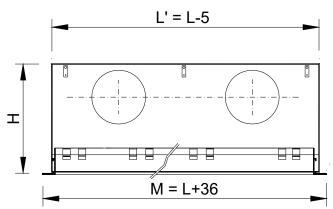
MATÉRIAUX

Diffuseurs fabriqués en aluminium et ailettes en aluminium couleur noir.

MOD	slots	F	E	L'	Н	D1	N
1200x300	1	1195	295	1145	256	1/158	69
1200x300	2	1195	295	1145	256	1/158	108
1200x300	3	1195	295	1145	296	2/198	147
1200x300	4	1195	295	1145	296	2/198	186
1350x300	1	1345	295	1295	256	1/158	69
1350x300	2	1345	295	1295	256	1/158	108
1350x300	3	1345	295	1295	296	2/198	147
1350x300	4	1345	295	1295	296	2/198	186

2 MADEL V-01/24

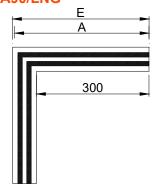




LNG-AR + PLSD...-R

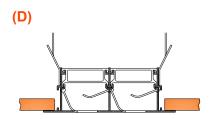
ACCESSOIRES

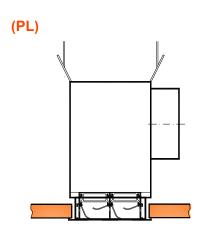
PLSD Plénum de raccordement circulaire latéral. Il comprend des supports pour suspension au plafond. Construit en acier galvanisé.

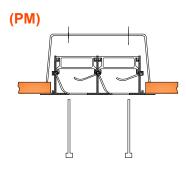

...-R Régulateur de débit sur le piquage de connexion

.../AIS/ Isolation thermique intérieure au moyen d'une mousse. Densité 25 kg/m3 ISO 845. Conductivité thermique 10° C_0,040 W/m°K EN-12667. Classification réaction au feu:B-s1, d0 EN-13501-1.

A90/LNG Diffuseur inactif sans pièces d'extrémités, composant un angle à 90°.


slots	L≤	0,5	L:	≤ 1	L≤	1,2	L≤	1,5	L:	≤ 2		
	Н	D1	N	Е								
1	256	1/158	256	1/158	256	1/158	256	1/158	256	2/158	69	68
2	256	1/158	256	1/158	256	1/158	256	2/158	256	2/158	108	107
3	296	1/198	296	1/198	296	2/198	296	2/198	296	2/198	147	147
4	296	1/198	296	1/198	296	2/198	296	2/198	296	2/198	186	186


A90/LNG



3 MADEL V-01/24

4

SYSTÈMES DE FIXATION

- (D) Diffuseur avec équerres percées pour suspension au plafond au moyen de tiges filetées.
- (PL) Diffuseur à visser au plénum et suspension de l'ensemble au plafond ou au mur.
- (PM) Diffuseur avec ponts de montage à installer dans le faux plafond ou au mur. Fixation par vis.

FINITIONS

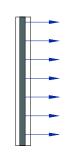
AA Anodisation couleur argent mat.

R9016S Peint blanc RAL 9016 (60-70% brillance)

R9010S Peint blanc RAL 9010 (60-70% brillance)

RAL... Peinture autres couleurs RAL.

TEXTE DE PRESCRIPTION


Fourniture et pose de diffuseur linéaire de la série LNG-AR+PLSD-R AA 2x2000 construit en aluminium et finition anodisée couleur argent mat. Avec plénum de raccordement circulaire latérale, régulateur de débit sur le piquage de connexion. Marque MADEL.

M A D E L V-01/24

VITESSE RECOMMANDÉE

	Vmin (m/s)	Vmax (m/s)
1	2.5	4.5
2	2.5	4.5
3	2.5	4
4	2.5	4

(E) 3.6 3.2 2.8 2.4

2

1.6

1.2

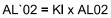
8.0

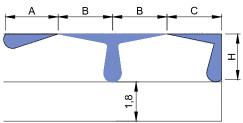
0.4

SECTION LIBRE DE SORTIE D'AIR (m2).

	0.5 m	1 m	1.5 m	2 m
1	0.0043	0.0087	0.013	0.0174
2	0.0087	0.0174	0.0261	0.0348
3	0.013	0.0261	0.0391	0.0522
4	0.0172	0.0348	0.052	0.0696

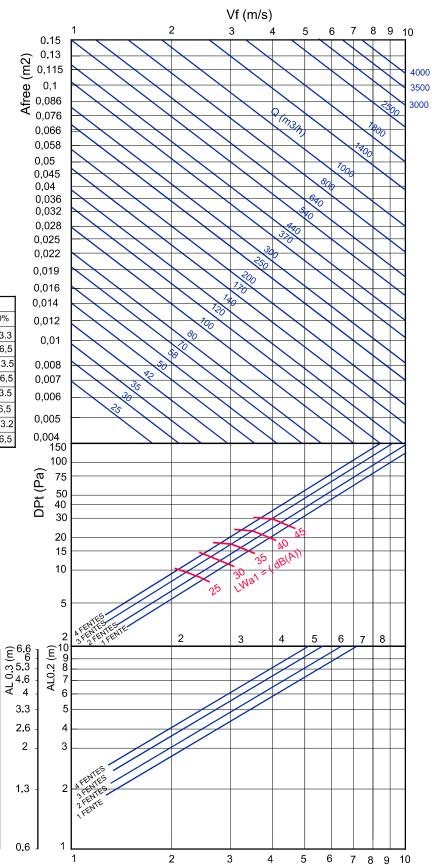
VALEURS DE CORRECTION POUR DPt et Lwa1.


LNG-AR + PLSD-R


			0.5 m			1 m		_	1.5 m			2 m	
		100%	50%	0%	100%	50%	0%	100%	50%	0%	100%	50%	0%
	Dpt	0.95	2.35	3.15	1	1.4	2.2	1	1.4	2.2	1.1	2.5	3.3
1	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5
	Dpt	0.98	2.48	3.25	1	1.5	2.3	1	1.5	2.3	1.2	2.7	3.5
2	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5
	Dpt	0.96	2.26	3.36	1	1.3	2.4	1	1.3	2.4	1.3	2.4	3.5
3	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5
	Dpt	0.95	2.35	3.05	1	1.4	2.1	1	1.4	2.1	1.1	2.5	3.2
4	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5

DPt1 = Kp x DPt Lwa1 = Lwa + Kf

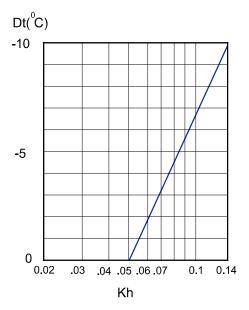
FACTEUR DE CORRECTION DE LA PORTÉE KL.


	0.5 m	1 m	1.5 m	2 m
1	0.71	1	1.07	1.14
2	0.73	1	1.09	1.15
3	0.74	1	1.11	1.2
4	0.75	1	1.25	1.25

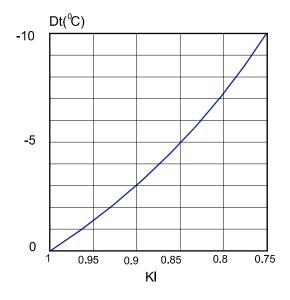
 $AL_{0.2} = A$ $AL_{0.2} = B+H$ $AL_{0.2} = C+H$

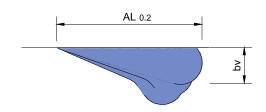
VITESSE LIBRE, PERTE DE CHARGE, PUISSANCE SONORE ET PORTÉE AVEC EFFET PLAFOND: 1 DIRECTION.

Vf (m/s)



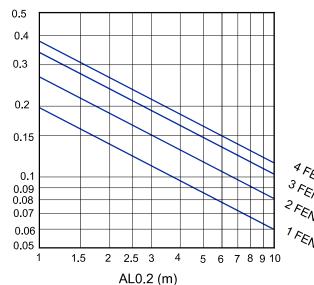



FACTEUR DE CORRECTION POUR LA DIFFUSION VERTICAL (bv) POUR DT (-).


Kh = Facteur de correction pour la diffusion verticale.

FACTEUR DE CORRECTION DE LA PORTÉE (L0,2) DT (-).

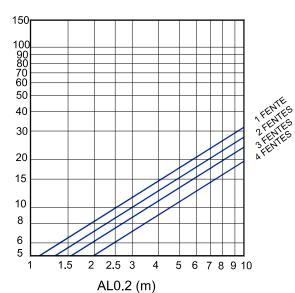
KI = Facteur de correction pour la porteé.



bv = Kh \times Al_{0.2}

$$AL'_{0.2}$$
 ($Dt < 0$) = $KI \times AL_{0.2}$

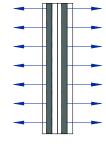
RELATION DE TEMPARATURES.


$$\frac{Dtl}{Dtz} = \frac{t \text{ habitation - } t \text{ x}}{t \text{ habitation - } t \text{ impulsion}}.$$

6

RELATION D'INDUCTION.

$$i = \frac{Qr}{Q_0} = \frac{Q \text{ total } x}{Q \text{ de impulsion.}}$$



VITESSE RECOMMANDÉE

	Vmin (m/s)	Vmax (m/s)
2	2.5	4.5
4	2.5	4

Y 3.6 3.2 2.8 2.4 2

1.6

1.2

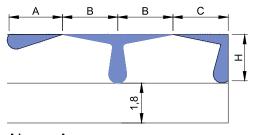
8.0

SECTION LIBRE DE SORTIE D'AIR (m2).

	0.5 m	1 m	1.5 m	2 m
1	0.0043	0.0087	0.013	0.0174
2	0.0087	0.0174	0.0261	0.0348
3	0.013	0.0261	0.0391	0.0522
4	0.0172	0.0348	0.052	0.0696

VALEURS DE CORRECTION POUR DPt et Lwa1.

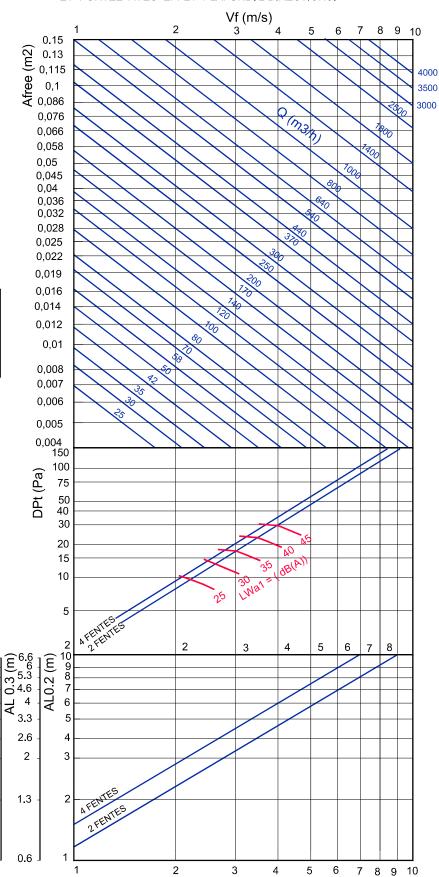
			0.5 m			1 m			1.5 m			2 m	
		100%	50%	0%	100%	50%	0%	100%	50%	0%	100%	50%	0%
	Dpt	0.98	2.48	3.25	1	1.5	2.3	1	1.5	2.3	1.2	2.7	3.5
2	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5
	Dpt	0.95	2.35	3.05	1	1.4	2.1	1	1.4	2.1	1.1	2.5	3.2
4	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5


 $DPt1 = Kp \times DPt$ Lwa1 = Lwa + Kf

FACTEUR DE CORRECTION DE

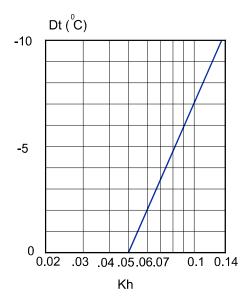

LA PORTÉE KL.

	0.5 m	1 m	1.5 m	2 m
2	0,6	1	1.17	1.3
4	0.767	1	1.2	1.17

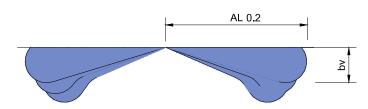

$AL`02 = KI \times AL02$

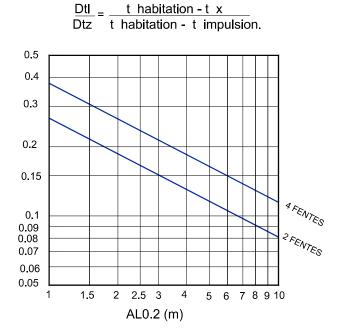
 $AL_{0.2} = A$ $AL_{0.2} = B+H$ $AL_{0.2} = C+H$

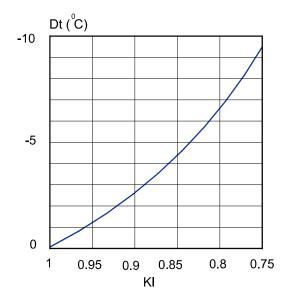
VITESSE LIBRE, PERTE DE CHARGE, PUISSANCE SONORE ET PORTÉE AVEC EFFET PLAFOND: 2 DIRECTIONS.



Vf (m/s)

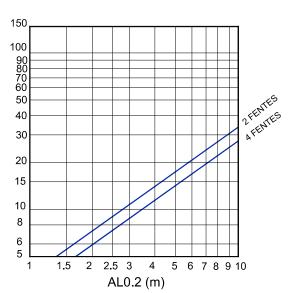



FACTEUR DE CORRECTION POUR LA DIFFUSION VERTICAL (bv) POUR DT (-).


Kh = Facteur de correction pour la diffusion verticale.

RELATION DE TEMPARATURES.

FACTEUR DE CORRECTION DE LA PORTÉE (L0,2) DT (-).



KI = Facteur de correction pour la porteé.

bv = Kh x AI
$$_{0.2}$$

AL $_{0.2}$ (Dt <0) = KI x AL $_{0.2}$

RELATION D'INDUCTION.

$$i = \frac{Qr}{Q_0} = \frac{Q \ total \ x}{Q \ de \ impulsion.}$$

0.15

8 9 10

LNG SERIES

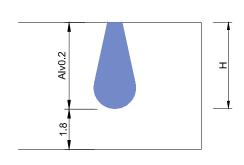
VITESSE RECOMMANDÉE

	Vmin Vmax (m/s) (m/s)				
1	2.5	4.5			
2	2.5	4.5			
3	2.5	4			
4	2.5	4			

SECTION LIBRE DE SORTIE D'AIR (m2).

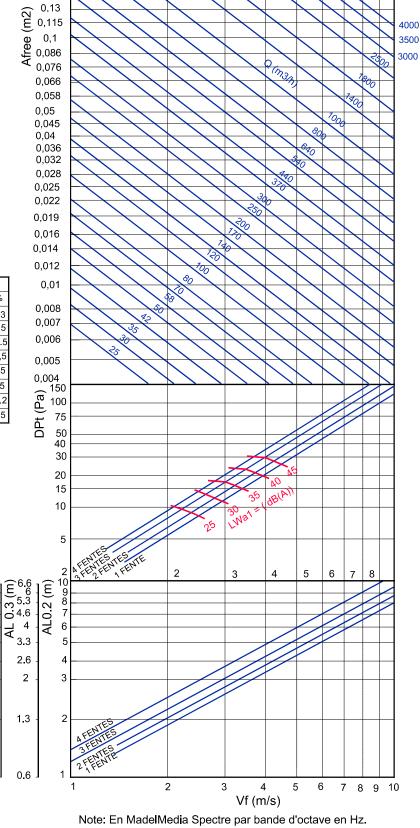
	0 . 5 m	0.5 m 1 m		2 m
1	0.0043	0.0087	0.013	0.0174
2	0.0087	0.0174	0.0261	0.0348
3	0.013	0.0261	0.0391	0.0522
4	0.0172	0.0348	0.052	0.0696

VALEURS DE CORRECTION POUR DPt et Lwa1.


			0.5 m			1 m		,	1.5 m			2 m	
		100%	50%	0%	100%	50%	0%	100%	50%	0%	100%	50%	0%
	Dpt	0.95	2.35	3.15	1	1.4	2.2	1	1.4	2.2	1.1	2.5	3.3
1	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5
	Dpt	0.98	2.48	3.25	1	1.5	2.3	1	1.5	2.3	1.2	2.7	3.5
2	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5
	Dpt	0.96	2.26	3.36	1	1.3	2.4	1	1.3	2.4	1.3	2.4	3.5
3	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5
	Dpt	0.95	2.35	3.05	1	1.4	2.1	1	1.4	2.1	1.1	2.5	3.2
4	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5

 $DPt1 = Kp \times DPt$

Lwa1 = Lwa + KfFACTEUR DE CORRECTION DE LA PORTÉE KL.


	0,5 m	1 m	1.5 m	2 m
1	0.7	1	1.1	1.2
2	0.72	1	1.15	1.25
3	0.72	1	1.12	1.2
4	0.74	1	1.25	1.25

$ALv'0.2 = KI \times ALv02$

VITESSE LIBRE, PERTE DE CHARGE, PUISSANCE SONORE: IMPULSION VERTICALE.

Vf (m/s)

M A D E L V-01/24

2

1.6

1.2

8.0

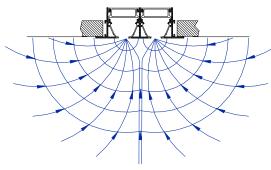
COEFFICIENT DE CORRECTION DE LA PORTÉE VERTICALE (Alv 0,2) DT(+).

	D T(+5)	DT(+10)
1 FENTE	0.75	0.64
2 FENTES	0.76	0.65
3 FENTES	0.77	0.66
4 FENTES	0.8	0.64

DT = T impulsion - T local

AIv 0,2 (DT +) = Kv x AI 02

LNG 2FENTES x 2m Afree = 0.0348 m2.


EXEMPLE:

Vf = 3.1 m/s.

ALv 0,2 = 2.9 m.

ALv'02 = 1.1 x 2.9 = 3.19 m. DT(+5) = 0.76 x 3.19 = 2.42 m.

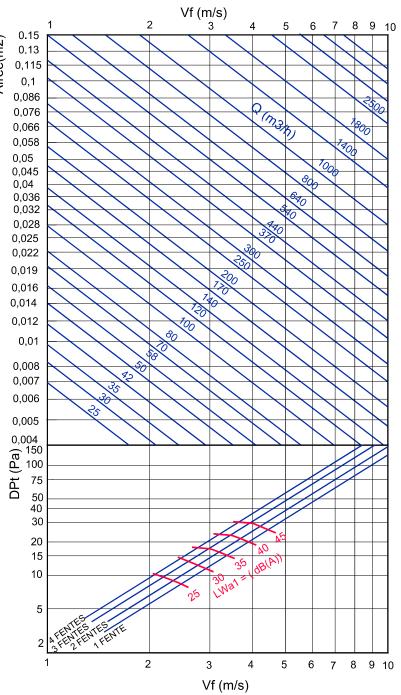
DT $(+10) = 0.65 \times 3.19 = 2.07 \text{m}$.

VITESSE RECOMMANDÉE

	Vmin (m/s)	Vmax (m/s)
1	2	3.5
2	2	3.5
3	2	3
4	2	3

SECTION LIBRE DE SORTIE D'AIR (m2).

	0.5 m	1 m	1.5 m	2 m
1	0.0043	0.0087	0.013	0.0174
2	0.0087	0.0174	0.0261	0.0348
3	0.013	0.0261	0.0391	0.0522
4	0.0172	0.0348	0.052	0.0696


VALEURS DE CORRECTION POUR DPt et Lwa1.

		0.5 m			1 m	n 1.5		1.5 m	.5 m		2 m		
		100%	50%	0%	100%	50%	0%	100%	50%	0%	100%	50%	0%
	Dpt	0.95	2.35	3.15	1	1.4	2.2	1	1.4	2.2	1.1	2.5	3.3
1	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5
	Dpt	0.98	2.48	3,25	1	1.5	2.3	1	1.5	2.3	1.2	2.7	3.5
2	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5
	Dpt	0.96	2.26	3.36	1	1.3	2.4	1	1.3	2.4	1.3	2.4	3.5
3	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5
	Dpt	0.95	2.35	3.05	1	1.4	2.1	1	1.4	2.1	1.1	2.5	3.2
4	Lwa1	-	1,5	3,5	-	1,5	3,5	+1,5	+3	+5	+3	+4,5	+6,5

 $DPt1 = Kp \times DPt$

Lwa1 = Lwa + Kf

VITESSE LIBRE, PERTE DE CHARGE, PUISSANCE SONORE.

